A Bayesian Kernel Logistic Discriminant Model: An Improvement to the Kernel Fisher's Discriminant

نویسندگان

  • Riadh Ksantini
  • Djemel Ziou
  • Bernard Colin
  • François Dubeau
چکیده

The Kernel Fisher’s Discriminant (KFD) is a non-linear classifier which has proven to be powerful and competitive to several state-of-the-art classifiers. Its main ingredient is the kernel trick which allows the efficient computation of Fisher’s Linear Discriminant in feature space. However, it is assuming equal covariance structure for all transformed classes, which is not true in many applications. In this paper, we propose a novel Bayesian Kernel Logistic Discriminant model (BKLD) which goes one step further by representing each transformed class by its own covariance matrix. This can allow more flexibility and better classification performances than the KFD. The posterior distribution of the BKLD model is elegantly approximated by a tractable Gaussian form using variational transformation and Jensen’s inequality, which allow a straightforward computation of the weights. An extensive comparison of the BKLD to the KFD and to other state-of-the-art non-linear classifiers is performed. Also, analysis of algorithm complexity and numerical accuracy is provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework

Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...

متن کامل

AN INTRODUCTION TO KERNEL - BASED LEARNING ALGORITHMS 183 Empirical Risk

| This review provides an introduction to Support Vector Machines, Kernel Fisher Discriminant analysis and Kernel PCA, as examples for successful kernel based learning methods. We rst give a short background about VC theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrat...

متن کامل

A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)

Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...

متن کامل

Learning kernel logistic regression in the presence of class label noise

The classical machinery of supervised learning machines relies on a correct set of training labels. Unfortunately, there is no guarantee that all of the labels are correct. Labelling errors are increasingly noticeable in today’s classification tasks, as the scale and difficulty of these tasks increases so much that perfect label assignment becomes nearly impossible. Several algorithms have been...

متن کامل

A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)

Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008